• Способы построения интерполяционных многочленов Лагранжа, основные этапы. Интерполирование функций многочленами Ньютона, способы построения графика. Постановка задачи аппроксимации функции одной переменной, предпосылки повышения точности расчетов.

    презентация (204,5 K)
  • Интерполяция (частный случай аппроксимации). Аппроксимация функцией. Метод наименьших квадратов. Из курса математики известны 3 способа задания функциональных зависимостей: аналитический, графический, табличный.

    реферат (70,4 K)
  • Построение массива конечных разностей. Выполнение экстраполяции. Вычисление приближенной функции с помощью многочлена Лагранжа. Определение значения функции с помощью формул Ньютона. Квадратичная сплайн-интерполяция. Среднеквадратичная аппроксимация.

    контрольная работа (1004,9 K)
  • Аппроксимация экспериментальных зависимостей методом наименьших квадратов. Правило Крамера. Графическое отображение точек экспериментальных данных. Аномалии и допустимые значения исходных данных. Листинг программы на С++. Результаты выполнения задания.

    курсовая работа (166,7 K)
  • Архитектура 32-х разрядных систем. Алгоритмы выполнения арифметических операций над сверхбольшими натуральными числами, представленными в виде списков. Инициализация системы. Сложение. Вычитание. Умножение.

    доклад (56,2 K)
  • Проблема решения уравнений в целых числах: от Диофанта до доказательства теоремы Ферма. Сущность теоремы о делимости данного числа на произведение двух взаимно простых чисел, особенности ее применения к решению неопределенных уравнений в целых числах.

    курсовая работа (108,5 K)
  • Краткий биографический очерк жизни и деятельности Георга Кантора и Шарля Мерэ. История создания теории действительного числа, ее математическая сущность и характеристика. Определение отношения порядка. Понятие замкнутости множества вещественных чисел.

    презентация (473,7 K)
  • Застосування конгруенцій: ознаки подільності, перевірка арифметичних дій, перетворення десяткового дробу у звичайний та навпаки, індекси. Вчені, що займалися питанням застосування конгруенцій. Основні теореми в теорії конгруенцій - Ейлера і Ферма.

    курсовая работа (226,2 K)
  • Тригонометрические функции от одного и того же аргумента выражаются алгебраически одна через другую, поэтому в результате выполнения какой-либо тригонометрической операции над любой из аркфункций получается алгебраическое выражение.

    реферат (203,5 K)
  • Биография Архимеда - древнегреческого математика, физика и инженера из Сиракуз. Исследования по геометрии, арифметике и алгебре. Книги "О равновесии плоских фигур" и "О плавании тел", "О коноидах и сфероидах", "О шаре и цилиндре", "Измерение круга".

    презентация (1,4 M)
  • Описание колебательных систем дифференциальными уравнениями с малым параметром при производных, асимптотическое поведение их решений. Методика регулярных возмущений и особенности ее применения при решении задачи Коши для дифференциальных уравнений.

    курсовая работа (1,5 M)
  • Еволюція важкої частинки в системі броунівських частинок зі склеюванням. Асимптотичні властивості важкої частинки. Вживання системи стандартних вінерівських процесів. Економічні, соціальні та правові основи забезпечення безпеки у надзвичайних ситуаціях.

    курсовая работа (830,4 K)
  • Нахождение асимптоты. Геометрический смысл асимптоты. Общий метод нахождения асимптоты. Виды. Горизонтальная асимптота. Вертикальная асимптота. Наклонная асимптота. Асимптота - прямая или кривая линия, которая продолжена, приближается к другой кривой.

    реферат (156,7 K)
  • Определение вертикальной, горизонтальной и наклонной асимптот графиков функций. Точки разрыва и область определения функции. Нахождение конечного предела функции. Неограниченное удаление точек графика от начала координат. Примеры нахождения асимптот.

    презентация (99,6 K)
  • Вывод изображения на экран дисплея и действия с ним, в т.ч. визуальный анализ, требуют от пользователя геометрической грамотности. Понятия, формулы и факты, относящиеся к плоскому и трехмерному случаям, играют в задачах компьютерной графики особую роль.

    реферат (42,1 K)
  • Определение и структурные уравнения аффинной связности. Экспоненциальные отображения в теории пространств. Ковариантное дифференцирование и классические формулировки. Аффинное пространство n измерений. Точечно-векторная аксиоматика аффинного пространства.

    курсовая работа (167,8 K)
  • Введение в алгебраическую геометрию. Определения аффинных многообразий: фиксированное алгебраически замкнутое поле; аффинное пространство, топология Зорисского на аффинной прямой; нётерово топологическое пространство. Понятия проективных многообразий.

    контрольная работа (204,1 K)
  • Понятие о геометрическом преобразовании. Роль движений в геометрии. Применение аффинных преобразований при решении задач. Свойства аффинного преобразования. Транзитивность, рефлексивность и симметричность. Свойство перспективно-аффинного соответствия.

    курсовая работа (547,9 K)
  • Определение и формула аффинного преобразования в сопряжённых комплексных координатах. Уравнение образа прямой при аффинном преобразовании. Частные виды аффинных преобразований в сопряжённых комплексных координатах.

    дипломная работа (222,8 K)
  • Тетраедр і паралелепіпед як приклади багатогранників. Багатокутники, з яких складений багатогранник, сторони граней - ребра, кінці ребер - вершини багатогранника. Діагоналі багатогранника та їх властивості. Призми, їх види, характеристики та визначення.

    презентация (85,7 K)